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Research applications in chemoinformatics and toxicoinformatics increasingly use representations of molecules
in the form of numerical descriptors that capture the structural characteristics and properties of molecules.
These representations are useful for ADME/toxicity prediction, diversity analysis, library design, QSAR/
QSPR, virtual screening, and other purposes. Molecular descriptors have ranged from relatively simple
forms calculated from simple two-dimensional (2D) chemical structures to more complex forms representing
three-dimensional (3D) chemical structures or complex molecular fingerprints consisting of numerous bit
positions to represent specific chemical information. The Mold2 software was developed to enable the rapid
calculation of a large and diverse set of descriptors encoding two-dimensional chemical structure information.
Comparative analysis of Mold2 descriptors with those calculated by Cerius2, Dragon, and Molconn-Z on
several data sets using Shannon entropy analysis demonstrated that Mold2 descriptors convey a similar
amount of information. In addition, using the same classification method, slightly better models were generated
using Mold2 descriptors compared to those generated using descriptors from the compared commercial
software packages. The low computing cost for Mold2 makes it suitable not only for small data sets, such
as in QSAR, but also for large databases in virtual screening. High reproducibility and reliability are expected
because Mold2 does not require 3D structures. Mold2 is freely available to the public (http://www.fda.gov/
nctr/science/centers/toxicoinformatics/index.htm).

INTRODUCTION

Computational approaches applied in drug discovery and
toxicity prediction often require molecular descriptors that reflect
structural information and physicochemical properties of chemi-
cals. Predictive models in quantitative structure-activity rela-
tionship (QSAR)/quantitative structure-property relationship
(QSPR) are developed by correlating the properties or
activities with the structural information. The structures
themselves are difficult for use in the models. Therefore, the
issue becomes how the structural information is represented
in the models. Molecular descriptors are used to extract the
structural information in the form of numerical or digital
representation that is suitable for model development, serving
as the bridge between the molecular structures and physi-
cochemical properties or biological activities of chemicals.

In 1937, Louis L. Hammett developed an equation that
became a historic milestone in chemistry. In the Hammett
equation, the rate or equilibrium constants of side-chain
reactions of aromatic acids, phenols, and anilines as well as
other compounds are calculated from two parameters: F
characterizing the nature of the reaction and σ quantifying

the electronic effect of replacing a hydrogen atom by a given
substituent in the meta or para position.1 The mechanistically
based Hammett equation thus became the first QSPR
equation in chemistry.

The QSAR paradigm has its roots in the early 1960s when
Hansch2 and Fujita,3 building on the work of Hammett1 and
Taft,4 introduced a steric parameter π, the relative hydro-
phobicity of a constituent. The hydrophobicity parameter π
based on the n-octanol/water partition coefficients enabled
the extension of QSPR to the realm of biology (QSAR) and
has since been extensively used to develop quantitative
models from in Vitro activity data.

The parameters σ and π in the classic Hansch equation
are chemical properties that in the QSAR lexicon are one-
dimensional (1D) molecular descriptors that were initially
empirically determined but later on were often computa-
tionally calculated. Fostered by the power of computing,
extensive interests and broadly diverse approaches in the last
two decades focused on developing molecular descriptors
and their correlation with biological activity. 1D descriptors
remain important and are often used with, and sometimes
instead of, descriptors derived from both two-dimensional
(2D) and three-dimensional (3D) structures.5–39 Concomi-
tantly, programs became available for computing descriptors
either as independent software or as part of QSAR software;
notable examples are ADAT,40 CODESSA,41 OASIS,42
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talete.mi.it),MOLCONN-Z(www.eslc.vabiotech.com),SYBYL
(www.tripos.com), and others.

In the most general sense, an effective molecular descriptor
is the one representing chemical structure features or
chemical properties that vary across a set of chemicals
similarly to a biological end point associated with the
chemicals (i.e., the descriptor and the biological end point
should be correlated). Early research emphasized descriptors
amenable to physical interpretation in a biological context
which, in turn, could provide insights of an underlying
mechanism of action, ways of reducing a drug’s toxicity or
increasing its efficacy. Time and experience, however, taught
researchers that the physically interpretable descriptors, as
desirable as they were, did not usually yield the most accurate
QSAR model. Rather, regression and classification models
derived from very large descriptor sets of esoteric physical
meaning often yielded models with greater accuracy and
fidelity.

Over time, the descriptor software evolved to produce
hundreds or, in the case of 3D CoMFA, thousands of
descriptors. While using more descriptors increased the
fidelity of structure-activity correlation, it resulted in a new
problem: the overfitted models. With descriptors usually
outnumbering the chemicals available for training, a model
with an excellent fit to the training set could be useless for
predicting unknown chemicals if the model is overfitted. The
specter of an overfitted model demanded both diligence in
descriptor selection and vigilance in guarding against over-
fitted models, both of which add an immense computational
expense to model development. The Mold2 descriptors
reported here are large in number, warranting vigilance when
many are used. In drug discovery where high throughput
technology and combinatorial chemistry yield huge databases
of biological activities and chemical structures, the compu-
tational expense is amplified many times over.

While highly desirable, the a priori design and validation
of a relatively smaller number of simpler molecular descrip-
tors that can give a comparable or a better result than a large
descriptor set for drug candidate discovery and toxicity
prediction is a formidable task. Caution must be exercised
to ensure that such custom descriptor sets yield reliable and
reproducible results.

In this paper we report Mold2, a software package for
calculating 779 molecular descriptors, solely from 2D
chemical structures. Descriptors programmed in Mold2 are
technical implementations of well-known molecular descrip-
tors reported in literature, none are novel in concept.
Therefore, they may partially overlap with ones in some
commercial software packages. Mold2 molecular descriptors
are easily and quickly calculated with no missing values, a
common problem with most existing commercial systems.
Comparisons with molecular descriptors calculated using
several other commercial software packages demonstrated
that Mold2 molecular descriptors yield models that are
comparable in quality when used with the classification
software Decision Forest48–50 for several reported data
sets.44–47 We show through Shannon entropy analysis that
the Mold2 descriptors convey a similar amount of informa-
tion as the other tested descriptor sets. Mold2 is written in
C++ on Windows XP system and is freely available to the
public.

MOLD2 DESCRIPTORS

A number of molecular descriptors have been reported in
the literature and can be grouped into three categories:11,16,35

1D, 2D, and 3D. 1D molecular descriptors present bulk
properties of compounds, such as the number of specific
atoms, molecular weight, etc., and can be calculated solely
based on a molecular formula. 2D molecular descriptors
present structural information that can be computed from
2D structure of a molecule, such as the number of benzene
rings, the number of hydrogen bond donors, etc. 3D
molecular descriptors present structural information that has
to be derived from 3D representation of a molecule, such as
solvent accessible surface area with positive partial charge
in the structure.

It has been argued that 3D molecular descriptors generally
perform better than 2D molecular descriptors in QSAR and
other applications where the 3D structure of a compound,
including absolute stereochemistry, is critical for binding to
a receptor. However, the opposite observations have been
reported in comparative studies using different methods,51–53

and in the comparative analysis presented here (see section
titled “Evaluation of Descriptors”), indicating that 2D
descriptors could perform equivalently to 3D descriptors in
most applications. An optimal set of molecular descriptors
in the absolute sense is currently not available and may not
exist. For many applications in QSAR and predictive
toxicology, the use of simpler 2D molecular descriptors
appears to be sufficient, and beneficial, given the difficulties
and uncertainties associated with using biologically active
conformations for 3D molecular descriptors.

The current version of Mold2 calculates 779 1D and 2D
molecular descriptors. The 779 descriptors can be grouped
into 20 categories given in Table 1 based on theoretical
consideration.

The 1D descriptors (sometimes called 0D descriptors in
the literature) are calculated solely based on the molecular
formula. The atom counts include numbers of different atoms
and the total number of atoms in the molecule. Two
physicochemical properties are molecular weight and average
molecular weight.

The 2D descriptors are calculated from the 2D structure
of a molecule, though some of them such as logP and
fragment counts are called 1D descriptors in the literature.

The 2D descriptor’s counts of atoms are different from
those in the 1D descriptors since different types of atoms
are counted. That is, all types of carbon atoms are considered
as the same in 1D descriptors because a 1D molecular
formula does not distinguish among them. Types of carbon
atoms in the 2D descriptors are distinguished based on
hybridization status, such as primary carbon, tertiary carbon
on ring structure, unsubstituted aromatic carbon, and so on.
Mold2 includes most atom types that are present in organic
compounds.

The second type of 2D descriptors is related to the bond
information such as numbers of single bonds, double bonds,
aromatic bonds, rotatable bonds, and so on.

There are 106 functional groups available from Mold2:
examples are a carboxylic group on an aromatic ring, a
tertiary amide, an aromatic aldehyde, an aliphatic hydroxy-
lamine, a sulfonic acid, and so forth.
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The physicochemical properties are calculated from the
2D structure of a compound, which are not similar to
the ones in 1D descriptors that are obtained only based on
the molecular formula. The octanol/water partition coefficient
parameter, logP,9 van der Waals volume, and the sum of
Pauling atomic polarizabilities are examples of this subclass
of 2D descriptors.

Structural features are specific structural components
whose chemical and biological functionality is not explicitly
understood, such as the number of independent rings, circuits,
aromatic rings, three-membered rings, and so on.

The 2D autocorrelation descriptors33,36A(d), are calculated
from the 2D structure based on the autocorrelation function

A(d))∑
j)1

a

∑
i)1

a

σ(dij - d)pipj

σ) { 0(dij * d)
1(dij ) d)

(1)

where d is a topological distance and can be any number
between 1 and the maximum of distance in a molecule, σ is
a function of the variable dij (the topological distance between
atoms i and j), a is the number of atoms in the molecule,
and pi and pj are the properties of atoms i and j. ATS
(autocorrelation of topological structures) and the Moran
coefficient (general spatial autocorrelation index) are the
members of this subclass of descriptors.

The Balaban index descriptors8,26 are obtained from the
Balaban distance connectivity index J that is calculated using
the following formula

J) B
C+ 1∑k)1

B

√(ViVj)k (2)

where Vi and Vj are the vertex distance degrees of two atoms
connected by bond k, B is the number of bonds of the
molecule, and C is the cyclomatic number.

The connectivity index descriptors5,7,10,30,39 are calculated
from the topological structure of a molecule by using a
formula similar to the index J. The total connectivity index,
local connectivity index, and Randic connectivity index are
the examples of such connectivity index descriptors.

Descriptors such as the cyclicity index and average
cyclicity index are part of the detour index10,13 that is
calculated from the detour distance matrix of a molecule.
The detour matrix (or maximum path matrix) [∆]ij is a square
symmetric matrix

[∆]ij ) { ∆ij)
maxpij (i* j)

0 (i) j)
(3)

where its element of row i and column j (maxpij) is the
maximum number of edges between nodes i and j and is
zero from a node to itself.

The topological distance index5,8,33,39 descriptors are
derived from the distance matrix D (or vertex distance
matrix) of a molecule.

[D]ij ) { dij)
minpij (i* j)

0 (i) j)
(4)

The distance matrix is a square symmetric matrix summing
up the topological distance information between all pairs of
atoms. Its elements represent the shortest paths in the number
of edges from an atom to another, and by convention it is
zero from an atom to itself. The average atom connectivity
index and the Rouvray index (total connectivity index) are
examples of this type of descriptors.

Descriptors extracted from the eigenvalues21 of an adjacent
matrix and other matrices of a molecule are classified into
the group of eigenvalue based descriptors, including the
Lovasz-Pelikan index, the folding degree index, the charac-
teristic root index, and so on.

The information content56 descriptors are derived from the
information content of a molecule (Ic). Ic is used to measure
the degree of diversity of the atoms or bonds in a molecule
and defined by the formula

I)∑
c)1

C

nclog2nc (5)

where C is the number of different types of atoms or bonds,
and nc is the number of atoms or bonds of the cth type. Mean
information content, mean information content on edge
equality, and the redundancy index are some examples.

The Kier index descriptors6,12,31 are derived from the Kier
shape indices, a set of topological shape indices defined in
terms of the number of graph vertices and the number of
paths with fixed length m (m)1, 2, 3) in the H-deleted
molecular graph. The descriptors include Kier shape descrip-
tors, Kier steric descriptors, Kier flexibility descriptors, and
so on.

Descriptors related to molecular walk counts7,14 are
calculated based on the graph walks. They are extracted from

Table 1. Molecular Descriptors in Mold2

class subclass
number of
descriptors example of descriptors

1D counts for atoms 105 number of O atoms
chemical physical

property
2 molecular weight

2D counts for atoms 80 number of ring tertiary
C

counts for bonds 9 number of rotatable
bonds

counts for functional
groups

106 number of carboxylic
(aromatic)

chemical physical
property

16 logP

structural features 13 number of 5 member
rings

2D autocorrelation 96 Moran coefficient
Balaban index 12 normalized centric

index
connectivity index 36 Randic connectivity

index
detour index 24 cyclicity index
distance (topological)

index
73 average atom

eccentricity
Eigen value based

descriptors
88 folding degree index

information content 45 mean information
content

Kier index 14 Kier flexibility
molecular walk counts 13 total walk count
Schultz index 4 reciprocal Schultz

index
topological charge

index
21 mean topological

charge
Wiener index 17 normalized Wiener

index
Zagreb index 5 quadratic index
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the adjacency matrix of a molecule. Total walk count,
weighted walk degrees, and walk connectivity indices are
examples.

The subclass of Schultz index SI descriptors18 are calcu-
lated based on the formula

SI)∑
i)1

a

[(M+D) • V]i (6)

where a is the number of atoms or bonds in a molecule, M
is the adjacency matrix (nodes or edges), D is the distance
matrix (nodes or edges), and V is the vertex or edge degree
vector.

Descriptors related to the topological charge index15,23 are
derived from the adjacency matrix and distance matrix of a
molecule, which estimate the charge transfer between pairs
of atoms, and therefore the global charge transfer in the
molecule, including the total topological charge, the mean
topological charge, and so on.

The Wiener index19 was originally defined only for acyclic
graphs. The Wiener index descriptors in Mold2 are derived
from the Wiener matrix modified from the distance matrix
of a molecule. Examples include the normalized Wiener
index, the Wiener index degree, and the resistance distance
hyper-Wiener index.

The Zagreb index descriptors33 are derived from the vertex
degree of atoms of a molecule, including the quadratic index
and the binormalized quadratic index.

GENERATION OF MOLD2 DESCRIPTORS

Molecular descriptors are generated from 2D molecular
structures of chemicals. Mold2 accepts an SDfile of the
molecules for which descriptors are to be calculated. Other
formats for representing molecular structure have to be
converted to an SDfile format for use by Mold2. The
chemical structures in an SDfile are processed sequentially.
Prior to descriptor calculation, Mold2 preprocesses the input
structure to provide a check whether, in fact, the structure is
as expected and correct. The preprocessing is a tedious
process of standardizing the structures, which includes
counterion removal, adding hydrogen atoms to heavy atoms,
correcting errors of an input structure, and transforming the
initial Molfile to the connection table that is operated on by
Mold2. The main part of Mold2 is a module for computing
the 779 descriptors. A set of generalized functions is used
to speed up calculations. Among the most important ones is
a module for the perception of the smallest set of smallest
rings (SSSR) that is adopted from a previously reported
algorithm.54 The related perception of the aromatic ring
system was implemented based on the same algorithm. The
functions important for generating walk matrix, distance
matrix, and path matrix were developed by modifying the
publicly available algorithm54 while adopting the canonical
representation of a structure.55 Descriptors are generated
using a set of subroutines, where related descriptors are
simultaneously calculated in the same subroutine to minimize
redundant calculations. Once all 779 molecular descriptors
for a molecule are calculated, results are output to a file (not
kept in memory); molecules are serially processed until all
molecules in the SDfile are processed. The processing status
and errors are recorded in a log file.

Mold2 was developed in C++ on the Windows XP
system. It is operated by the command line. The descriptors
of all molecules in a single SDfile (exported from any
database) can be calculated in a single run. The API
(Application Program Interface) for Mold2 is in development.
The executable file for Mold2 is publicly available.

EVALUATION OF MOLD2 DESCRIPTORS

Selection of proper molecular descriptors is an essential
step for QSAR/QSPR modeling. Accordingly, evaluation of
the performance of molecular descriptors is necessary for
guiding their proper use.

There are three ways of evaluating the utility of descrip-
tors. The first is to assess information that is presented in a
data set represented by a set of descriptors. Here the variance
of a descriptor among molecules in a data set is a measure
of the information represented by the descriptor. In general,
higher variance in the descriptors corresponds to a high
probability of developing a valid model using the descriptors.
The second is to make sure that there are not any redundant
descriptors and not many highly correlated descriptors. The
third is with a comparative analysis of sets of descriptors
when the same modeling approach is applied to the same
data set; the differences in modeling results can then be used
to differentiate the efficacy of two sets of descriptors. The
Mold2 descriptors were evaluated using all of the three
approaches. Specifically, Mold2 descriptors were compared
with descriptors from three commercial software packages
using information entropy analysis, analysis of correlations
between descriptors, and Decision Forest classification on
several reported data sets.

Information Content by Shannon Entropy Analysis.
The concept of Shannon entropy,56 also called information
entropy, has played a central role in information theory. It
can be used as a measure of uncertainty. In the approach,
the entropy of a random variable is associated with its
probability distribution, which is formulated as

Hn(p1, p2· · ·, pn))-∑
i)1

n

pilog2pi (7)

where pi is the probability of outcome i. In information
theory, the entropy is conceptually the actual amount of
(information theoretic) information in a data set. It is
reasonable to use the entropy of descriptors as an estimation
or measure of the structural information contained in the
descriptors of the data set. Golden et al.57 used Shannon
entropy to analyze different descriptors by ranking them
according to variance, with high variance descriptors pre-
ferred for discriminating compounds.

Shannon entropy analysis was conducted for comparing
Mold2 descriptors with three sets of descriptors generated
from the commercial software packages (i.e., Molconn-Z,
Dragon, and Cerius2) by using four published data sets, listed
in Table 2 as NCTR_ER,44 NCTR_AR,45 ER_comb,46 and
EPA.47 First, descriptors not having a value across all the
chemicals in a data set were discarded. For example, the
descriptor for the number of P atoms was discarded if any
compound in a data set had no P atom. Next, descriptors
were binned for each descriptor in the data sets and the
probability distributions calculated using 20 even bins that
spread from the minimum to the maximum values of the
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descriptor. The binning approach allows different units and
values to be comparable, a necessity since the number and
type of descriptors from different software packages vary
substantially. Then, the comparison of descriptor sets was
done assuming that mean Shannon entropy was proportional
to the average information encoded in different sets of
descriptors for the same data set. As shown in Table 2, for
all four data sets, the mean Shannon entropy of descriptors
from Mold2 is comparable with descriptors from Dragon and
slightly higher than those from Cerius2 and Molconn-Z. This
provides confidence that the Mold2 descriptors are equal or
more informative than the ones from the compared com-
mercial software packages.

The mean Shannon entropy only estimates the average
information presented in the descriptors. The distribution of

Shannon entropy is another important property of the
descriptors, as it is expected that the higher entropy descrip-
tors are, the better a data set is represented by the descriptors.
Thus, the distributions of Shannon entropy for all sets of
descriptors on the four data sets were plotted as the reverse
cumulative probability distributions against Shannon entropy.
The results are shown in Figure 1. The curves in the figure
can be read as follows: a point (x, y) in a curve indicates
that the probability (percentage) of descriptors (y) has
Shannon entropy greater than or equal to x. For example,
for the NCTR_ER data set (Figure 1B), the probability of
Mold2 descriptors with Shannon entropy greater than or equal
to 2 is 0.721, 0.551 for Cerius2, 0.723 for Dragon, and 0.505
for Molconn-Z. The slightly larger probability value in the
high entropy region for Mold2 across all four data sets

Table 2. Shannon Entropy Analysis Results

data set NCTR_AR NCTR_ER ER_Comb EPA

size (compounds) 202 232 1086 57453
Cerius2 descriptors 205 197 228 a

mean entropy 1.962 1.995 1.5983
Dragon descriptors 616 604 671 a

mean entropy 2.453 2.431 1.996
Molconn_Z descriptors 331 312 378 450

entropy 1.792 1.798 1.021 0.801
Mold2 descriptors 590 578 626 742

entropy 2.408 2.380 2.058 1.34

a The licenses of Cerius2 and Dragon are not available in our laboratories now, thus the descriptors for EPA data set were not analyzed.

Figure 1. Reverse cumulative probability versus the Shannon entropy of descriptors for data sets NCTR_AR (A), NCTR_ER (B), ER_Comb
(C), and EPA (D). The x-axis represents the Shannon entropies of descriptors, while the y-axis is the reverse cumulative probability of
descriptors having Shannon entropy greater than or equal to the x value. The curves of Mold2 descriptors are colored in red; Cerius2 in
green; Dragon in blue; and Molconn-Z in black.
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indicates Mold2 descriptors encode sufficient information and
are no worse than those from the compared commercial
software. The entropies of top 20 descriptors listed in Table
3 indicate that the most informative descriptors in the
compared sets are equivalent.

Correlations between Descriptors. It is not preferable
that there are many redundant or highly correlated descriptors
in a set of descriptors. All the compared descriptors sets have
no completely redundant descriptors. Correlation coefficients
(r) between the descriptors in each of the compared descrip-

Table 3. Shannon Entropy of Top 20 Descriptors

NCTR_AR NCTR_ER ER_Comb EPA

Mold2 Molcolm-Z Cerius2 Dragon Mold2 Molcolm-Z Cerius2 Dragon Mold2 Molcolm-Z Cerius2 Dragon Mold2 Molcolm-Z

4.02 3.92 4.03 4.11 4.12 3.89 4.05 4.08 3.82 3.58 3.98 4.13 4.30 4.30
4.02 3.90 3.98 4.05 3.93 3.87 4.03 4.07 3.82 3.58 3.92 3.99 4.30 3.79
3.97 3.90 3.93 4.03 3.89 3.84 3.91 3.99 3.81 3.56 3.89 3.97 4.17 3.79
3.94 3.90 3.92 4.02 3.86 3.79 3.91 3.98 3.80 3.53 3.86 3.95 3.68 3.41
3.93 3.86 3.91 4.02 3.85 3.79 3.87 3.97 3.79 3.47 3.78 3.91 3.65 3.22
3.93 3.85 3.90 4.00 3.82 3.79 3.85 3.97 3.78 3.46 3.78 3.91 3.60 3.09
3.93 3.85 3.87 3.99 3.77 3.78 3.84 3.92 3.78 3.44 3.71 3.90 3.58 2.95
3.92 3.83 3.86 3.99 3.75 3.77 3.83 3.92 3.76 3.41 3.71 3.89 3.57 2.95
3.91 3.82 3.86 3.98 3.75 3.76 3.81 3.89 3.72 3.41 3.71 3.86 3.54 2.92
3.90 3.80 3.84 3.97 3.75 3.75 3.75 3.89 3.72 3.41 3.70 3.83 3.53 2.81
3.90 3.80 3.83 3.97 3.74 3.75 3.74 3.89 3.70 3.41 3.65 3.81 3.48 2.80
3.90 3.78 3.81 3.96 3.74 3.70 3.74 3.85 3.70 3.41 3.63 3.80 3.47 2.78
3.89 3.77 3.81 3.95 3.74 3.70 3.73 3.85 3.69 3.40 3.55 3.78 3.47 2.76
3.88 3.77 3.80 3.94 3.74 3.70 3.70 3.83 3.68 3.38 3.51 3.77 3.45 2.69
3.87 3.77 3.80 3.93 3.73 3.67 3.70 3.83 3.67 3.38 3.44 3.75 3.42 2.69
3.87 3.77 3.79 3.93 3.73 3.67 3.67 3.82 3.67 3.38 3.41 3.74 3.42 2.66
3.87 3.77 3.78 3.93 3.72 3.65 3.67 3.82 3.66 3.37 3.41 3.74 3.41 2.58
3.86 3.75 3.78 3.93 3.72 3.65 3.64 3.81 3.65 3.36 3.41 3.72 3.40 2.58
3.86 3.73 3.77 3.93 3.72 3.63 3.64 3.79 3.63 3.36 3.41 3.71 3.40 2.57
3.86 3.73 3.75 3.93 3.72 3.61 3.64 3.79 3.62 3.36 3.40 3.71 3.38 2.57

Figure 2. Distribution of correlation coefficients (r) among descriptors for data sets NCTR_AR (A), NCTR_ER (B), ER_Comb (C), and
EPA (D). The x-axis represents the correlation coefficients (r) among descriptors, while the y-axis is the frequency of r. The curves of
Mold2 descriptors are colored in red; Cerius2 in green; Dragon in blue; and Molconn-Z in black.
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tors sets were calculated for the four data sets. The
frequencies of correlation coefficients (r) are plotted in Figure
2. For all of the four data sets, uncorrelated descriptors are
the majority for the compared descriptors sets. The weak
correlations (0.25 < r2 < 1) are less than 15% for all the
compared descriptors sets in all the data sets. The high
correlations (r2 > 0.8) are less than 1%. Furthermore, the
high correlations are from descriptors with a lot of missing
values which are replaced with zeros. The correlation analysis
demonstrated that Mold2 descriptors hold up to current
standards as the compared sets of descriptors.

Classification Performance Using Decision Forest. Sh-
annon entropy offers a way of assessing information content
and distribution encoded in descriptors. Consequently, the
comparison of different sets of descriptors using Shannon
entropy only reveals comparative differences in variance of
the structural information encoded in the descriptors. The
information (structural variance) does not necessarily cor-
relate with the biological activities or physicochemical
properties. In other words, a better set of descriptors not only
carries sufficient information but also should be biologically
and physicochemically relevant. In a sense, the quality of a
QSAR/QSPR model is solely dependent on the correlation
of chemical structure variables with biologically or physi-
cochemically related variables, which can be investigated
through comparing classification models developed from
different information-bearing descriptors.

Therefore, to compare different sets of descriptors in terms
of ability to correlate structural independent variables to
dependent variables, Decision Forest,48–50 a classification
method developed in our laboratories, was applied to all data
sets except the EPA data set (no toxicological end points
available for this data set). The descriptors to be compared
were calculated from Cerius2, Dragon, Molconn-Z, and
Mold2. Ten-fold cross-validation was used, where the data
set was first randomly divided into ten equal portions, and
each portion was then successively excluded from the
training set and predicted by the model developed from
the remaining nine portions. The prediction accuracy of the
cross-validation was taken as the average of prediction
accuracy results of the 10 models. Each random division of
the data set into 10 portions leads to 10 specific pairs
of training and test sets that could be biased in terms of
prediction accuracy. Therefore, the 10-fold cross-validation
was repeated 100 times to achieve a statistically unbiased
estimation of predictive accuracy, sensitivity, and specificity.
The performances (average prediction accuracy, sensitivity,
and specificity of the 100 runs of 10-fold cross-validations
as well as the corresponding standard deviations) of Decision

Forest models from different data sets and descriptors are
listed in Table 4. Mold2 descriptors were found to yield
slightly more accurate predictive models (at the same level
of quality) than those using the descriptors from the
compared commercial software. The evaluation added an
additional confidence that Mold2 descriptors, besides provid-
ing a reasonable representation of chemical structures, also
correlate well with biologically or physicochemically related
information for the purpose of applications to various
predictive toxicology and QSAR/QSPR models.

CONCLUSION

Molecular descriptors are used to represent structures of
chemicals and have played an important rule in the fields of
chemoinformatics and toxicoinformatics. Diverse applications
include virtual library generation and screening, similarity
and diversity analysis, QSAR/QSPR, and predictive toxicol-
ogy. Descriptors can be either computationally or empirically
derived. The 779 Mold2 descriptors presented here are
calculated from both 1D and 2D chemical structures. They
provide the scientific community with a zero-cost option for
efficiently obtaining a large set of informative descriptors
with wide applicability to many chemoinformatics and
toxicoinformatics problems.
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